Multistage Stochastic Programming: A Scenario Tree Based Approach to Planning under Uncertainty
نویسندگان
چکیده
In this chapter, we present the multistage stochastic programming framework for sequential decision making under uncertainty and stress its differences with Markov Decision Processes. We describe the main approximation technique used for solving problems formulated in the multistage stochastic programming framework, which is based on a discretization of the disturbance space. We explain that one issue of the approach is that the discretization scheme leads in practice to ill-posed problems, because the complexity of the numerical optimization algorithms used for computing the decisions restricts the number of samples and optimization variables that one can use for approximating expectations, and therefore makes the numerical solutions very sensitive to the parameters of the discretization. As the framework is weak in the absence of efficient tools for evaluating and eventually selecting competing approximate solutions, we show how one can extend it by using machine learning based techniques, so as to yield a sound and generic method to solve approximately a large class of multistage decision problems under uncertainty. The framework and solution techniques presented in the chapter are explained and illustrated on several examples. Along the way, we describe notions from decision theory that are relevant to sequential decision making under uncertainty in general.
منابع مشابه
Integrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty
In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied. The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...
متن کاملA robust multi-objective global supplier selection model under currency fluctuation and price discount
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss dec...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کاملScenario Tree Generation by Clustering the Simulated Data Paths
Multistage stochastic programs are effective for solving long-term planning problems under uncertainty. Such programs are usually based on a scenario model of future environment developments. A good approximation of the underlying stochastic process may involve a very large number of scenarios and their probabilities. We discuss the case when enough data paths can be generated, but due to solva...
متن کاملA Stochastic Programming Approach for a Multi-Site Supply Chain Planning in Textile and Apparel Industry under Demand Uncertainty
In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, t...
متن کاملMachine Learning Solution Methods for Multistage Stochastic Programming
This thesis investigates the following question: Can supervised learning techniques be successfully used for finding better solutions to multistage stochastic programs? A similar question had already been posed in the context of reinforcement learning, and had led to algorithmic and conceptual advances in the field of approximate value function methods over the years (Lagoudakis and Parr, 2003;...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010